Managing the CERN LHC Tier0/Tier1 centre

Status and Plans

July 8th 2003

Tony. Cass@cern.ch

The Problem

Summary of Computing Capacity Required for all LHC **Experiments in 2007**

source: CERN/LHCC/2001-004 - Report of the LHC Computing Review - 20 February 2001

(ATLAS with 270Hz trigger)			
	CERN		
	Tier 0	Tier 1	Total
Processing (K SI95)	1,727	832	2,559
Disk (PB)	1.2	1.2	_ 2.4
Magnetic tape (PB)	16.3	1.2	17.6

·Ramp up profile

But! Affected by:

·System lifetime

Regional

Centres

4,974

8.7

20.3

Grano

7,533

11.1

37.9

Tota

·I/O Performance

Another ~1,000 boxes

f. \sim 1,500 PCs and \sim 200 disk servers t CERN today.

~6,000 PCs

Uncertainty factor: 2x

ssues

Hardware Management

- Where are my boxes? and what are they?

Hardware Failure

- #boxes × MTBF + Manual Intervention = Problem!

Software Consistency

- Operating system and managed components
- Experiment software

State Management

- Evolve configuration with high level directives, not low level actions.

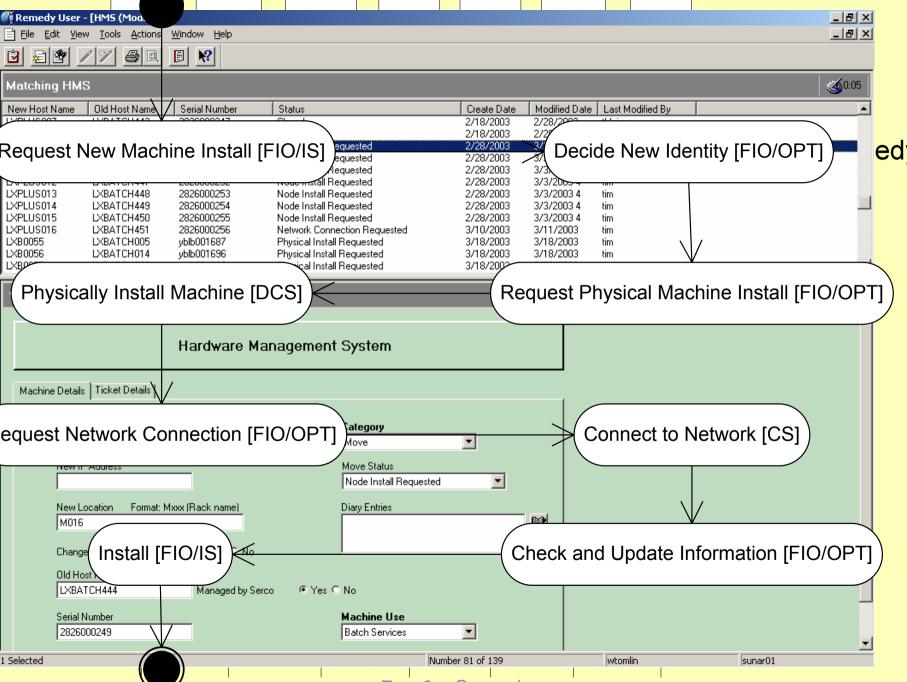
Maintain service despite failures

- or, at least, avoid dropping catastrophically below expected service level.

Hardware Management

- We are not used to handling boxes on this scale.
 - Essential databases were designed in the '90s for handling a few systems at a time.
 - » 2FTE-weeks to enter 450 systems!
 - Chain of people involved
 - » prepare racks, prepare allocations, physical install, logical install
 - » and people make mistakes...

Connection Management



nanagement system complains about the MAC/IP address association. One retwork two errors not unlikely if 400 systems are installed. Correct? Or orrect database?

Or buy pre-racked systems with single 10Gb/s uplink. But CERN doesn't ave the money for these at present...)

Hardware Management

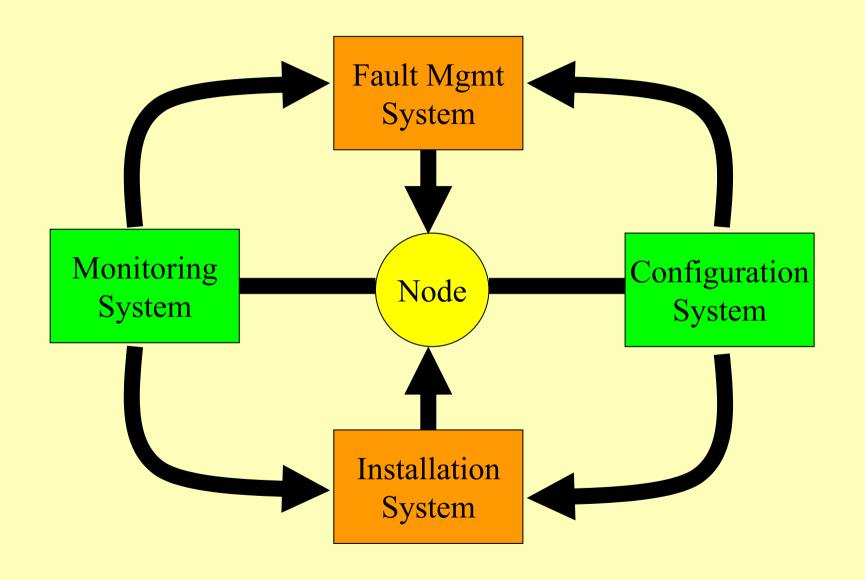
- We are not used to handling boxes on this scale.
 - Essential databases were designed in the '90s for handling a few systems at a time.
 - » 2FTE-weeks to enter 450 systems!
 - Chain of people involved
 - » prepare racks, prepare allocations, physical install, logical install
 - » and people make mistakes...
- Developing a Hardware Management System to track systems
 - 1st benefit has been to understand what we do!

tardware Management

- We are not used to handling boxes on this scale.
 - Essential databases were designed in the '90s for handling a few systems at a time.
 - » 2FTE-weeks to enter 450 systems!
 - Chain of people involved
 - » prepare racks, prepare allocations, physical install, logical install
 - » and people make mistakes...
- Developing Hardware Management System to track systems
 - 1st benefit has been to understand what we do!
 - Being used to track systems as we migrate to our new machine room.
 - Would now like SOAP interfaces to all databases.

tardware Failure

- MTBF is high, but so is the box count.
 - 2400 disks @ CERN today: 3.5×106 disk-hours/week » 1 disk failure per week
- Worse, these problems need human intervention.
- Another role for the Hardware Management System
 - Manage list of systems needing local intervention.
 - » Expect this to be prime shift activity only; maintain list overnigh and present for action in the morning.
 - Track systems scheduled for vendor repair
 - » Ensure vendors meet contractual obligations for intervention
 - » Feedback subsequent system changes (e.g. new disk, new MAC address) into configuration databases.


Software Consistency - Installation

- System Installation requires knowledge of hardware configuration and use
 - There will be many different system configurations
 - » different functions (CPU vs disk servers) and acquisition cycles
 - » Hardware drift over time (40 different cpu/memory/disk combinations today)
 - © Fortunately, there are major groupings
 - » Batch of 350 systems bought last year; 450 more this year
 - » 800 production batch systems should have identical software
- Use a Configuration Management Tool that allows definition of high level groupings
 - EDG/WP4 CDB & SPM tools are being deployed now
 - » but much work still required to integrate all config information and software packages.

Software Consistency - Updates

- Large scale software updates pose problems
 - Deployment Rapidity
 - Ensuring consistency across all targets
- Deployment Rapidity
 - EDG/WP4 SPM tool enables predeployment of software packages to local cache with delayed activation.
 - » reduces peak bandwidth demand—good for networks and central software repository infrastructure.
- Consistency
 - Similar to installation, accurate configuration informatio needed.
 - But, also need tight feedback between configuration database, monitoring tools and software installation system.

Leeping nodes in order

State Management

Clusters are not static

- OS upgrades
- reconfiguration for special assignments
 - » c.f. Higgs analysis for LEP
- load dependent reconfiguration
 - » but best handled by common configuration!

Today:

- Human identification of nodes to be moved, manual tracking of nodes through required steps.

Tomorrow:

- Give me 200, any 200. Make them like this. By then.
- A State Management System.
 - » Development starting now.
 - » Again, needs tight coupling to monitoring & configuration systems.

Frace under Pressure

- The pressure:
 - Hardware failures
 - Software failure
 - » 1 mirror failure per day
 - » 1% of CPU server nodes fail per day
 - Infrastructure failure
 - » e.g. AFS servers
- We need a Fault Tolerance System
 - Repair simple local failures
 - » and tell the monitoring system...
 - Recognise failures with wide impact and take action
 » e.g. temporarily suspend job submission
 - Complete system would be highly complex, but we are starting to address simple cases.

Conclusions

- The scale of the TierO/Tier1 centre amplifies simple problems.
 - Physical and logical installation
 - Maintaining operations
 - System interdependencies.
- Some basic tools are now being deployed, e.g.
 - A Hardware Management System
 - EDG/WP4 developed configuration and installation tools
- Much work still to do, though, especially for
 - a State Management System, and
 - a Fault Tolerance System.